Automata and Formal Languages

Lecture 01

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Agenda

Course Contents
PWhy???
>A Simple Vending Machine
>Language
$>$ Words
>Combining Languages
$>$ Word Concatenations
>Properties

Course Contents

$>$ Introduction to formal languages.
>Regular Languages and Finite Automata

- Regular Languages
- Regular Expressions
- Finite Automata
- Regular Grammar
- Pumping Lemma (Regular Languages)
>Context-Free Languages and Pushdown Automata
- Context-Free Languages
- Pushdown Automata
- Context-Free Grammars

Why????????

In compilers ,interpreters , natural language processing

a model of computation artificial intelligence
in probability

A Simple Vending Machine

Suppose we have a simple vending machine that allows the user to pick from two 10-cent items A and B. (To simplify things, the slot will accept only dimes.)

A Simple Vending Machine

- There are four inputs to the machine:
- d (dime),
- a (select item A),
- b (select item B),
- and r (return coins).

-The outputs will be
- n (do nothing),
- A (vend item A),
- B (vend item B),
- and d (dime).

Language

- A language is a set of strings.
 - If A is an alphabet, then a language over A
 come from A .
-Recall that A* denotes the set of all strings over A.
-So A* is the biggest possible language over
 A,
-and every other language over A is a subset of A^{*}.

Words

A word over an alphabet $A=\{a\}$ is a finite sequence of
letters.

$$
\mathrm{W}_{1}=\mathrm{aaa}
$$

$$
A=\{a, b\}
$$

$$
W_{1}=\text { aaa }
$$

$W_{2}=a b a$

Examples

$A=\{a\}$	$A=\{a, b\}$
$L_{1}=\varnothing$	$L_{1}=\{\mathrm{a}, \mathrm{aa}, \mathrm{aaa}, \ldots\}$
$L_{2}=\{\in\}$	$L_{2}=\{a \mathrm{a}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\}$
$L_{3}=\{\epsilon, a$, aa, aaa, aaaa, ... $\}$	$L_{3}=\{a, a a, a b, a a a, a b, a b a, a b b$, $\}$

Combining Languages

-Since languages are sets of strings, they can be combined by the usual set operations of:

- union,

- intersection,
- difference,
- and complement

Concatenations

- Another important way to combine two languages \boldsymbol{L} and \boldsymbol{M} is to form:
- the set of all concatenations of strings in \boldsymbol{L} with strings in \boldsymbol{M}.
-This new language is called the product of \boldsymbol{L} and \boldsymbol{M} and is
 denoted by L.M.
${ }^{\circ} L \cdot M=\{s \cdot t \mid s \in L$ and $t \in M\}$

Word Concatenations

$\mathrm{W}=\mathrm{bb}$
$\mathrm{U}=\mathrm{ab}$
$V=b$
W.U = bbab
U.W = abbb
$W . W=b b b b$
$\mathrm{W} . \mathrm{V}=\mathrm{bbb}$
Is W.U = U.W for any
two words W and U?
$\mathrm{V} . \mathrm{W}=\mathrm{bbb}$

Example

$>\mathrm{L}=\{\mathrm{ab}, \mathrm{ac})$
$>$ and $\mathrm{M}=(\mathrm{a}, \mathrm{bc}, \mathrm{abc})$
L. $M=$ ($a b a, ~ a b b c, ~ a b a b c, ~ a c a, ~ a c b c, ~ a c a b c\}$.

Properties

$$
\begin{array}{l|l}
\mathrm{L} .\{\mathrm{A})=\{\mathrm{A}\} . \mathrm{L}=L . & L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \ldots . \\
\mathrm{L.} . \boldsymbol{\varnothing}=\boldsymbol{\varnothing} . L=\varnothing . & L^{+}=L^{1} \cup L^{2} \cup L^{3} \cup \ldots . \\
L^{0}=\{\Lambda\}, & \\
L^{n}=L \cdot L^{n-1} \quad \text { if } n>0 . &
\end{array}
$$

Properties of Closure

Let L and M be languages over the alphabet A. Then
a) $\{\Lambda\}^{*}=\varnothing^{*}=\{\Lambda\}$.
b) $L^{*}=L^{*} \cdot L^{*}=\left(L^{*}\right)^{*}$.
c) $\Lambda \in L$ if and only if $L^{+}=L^{*}$.
d) $\left(L^{*} \cdot M^{*}\right)^{*}=\left(L^{*} \cup M^{*}\right)^{*}=(L \cup M)^{*}$.
e) $L \cdot(M \cdot L)^{*}=(L \cdot M)^{*} \cdot L$.

